3.1.44 \(\int \frac {\sinh (c+d x)}{(a+b \text {sech}^2(c+d x))^3} \, dx\) [44]

3.1.44.1 Optimal result
3.1.44.2 Mathematica [C] (warning: unable to verify)
3.1.44.3 Rubi [A] (verified)
3.1.44.4 Maple [A] (verified)
3.1.44.5 Fricas [B] (verification not implemented)
3.1.44.6 Sympy [F(-1)]
3.1.44.7 Maxima [F]
3.1.44.8 Giac [F]
3.1.44.9 Mupad [B] (verification not implemented)

3.1.44.1 Optimal result

Integrand size = 21, antiderivative size = 116 \[ \int \frac {\sinh (c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^3} \, dx=-\frac {15 \sqrt {b} \arctan \left (\frac {\sqrt {a} \cosh (c+d x)}{\sqrt {b}}\right )}{8 a^{7/2} d}+\frac {15 \cosh (c+d x)}{8 a^3 d}-\frac {\cosh ^5(c+d x)}{4 a d \left (b+a \cosh ^2(c+d x)\right )^2}-\frac {5 \cosh ^3(c+d x)}{8 a^2 d \left (b+a \cosh ^2(c+d x)\right )} \]

output
15/8*cosh(d*x+c)/a^3/d-1/4*cosh(d*x+c)^5/a/d/(b+a*cosh(d*x+c)^2)^2-5/8*cos 
h(d*x+c)^3/a^2/d/(b+a*cosh(d*x+c)^2)-15/8*arctan(cosh(d*x+c)*a^(1/2)/b^(1/ 
2))*b^(1/2)/a^(7/2)/d
 
3.1.44.2 Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 11.49 (sec) , antiderivative size = 1272, normalized size of antiderivative = 10.97 \[ \int \frac {\sinh (c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^3} \, dx =\text {Too large to display} \]

input
Integrate[Sinh[c + d*x]/(a + b*Sech[c + d*x]^2)^3,x]
 
output
(5*(3*(a^2 - 4*a*b + 16*b^2)*ArcTan[((Sqrt[a] - I*Sqrt[a + b]*Sqrt[(Cosh[c 
] - Sinh[c])^2])*Sinh[c]*Tanh[(d*x)/2] + Cosh[c]*(Sqrt[a] - I*Sqrt[a + b]* 
Sqrt[(Cosh[c] - Sinh[c])^2]*Tanh[(d*x)/2]))/Sqrt[b]] + 3*(a^2 - 4*a*b + 16 
*b^2)*ArcTan[((Sqrt[a] + I*Sqrt[a + b]*Sqrt[(Cosh[c] - Sinh[c])^2])*Sinh[c 
]*Tanh[(d*x)/2] + Cosh[c]*(Sqrt[a] + I*Sqrt[a + b]*Sqrt[(Cosh[c] - Sinh[c] 
)^2]*Tanh[(d*x)/2]))/Sqrt[b]] + (8*Sqrt[a]*b^(3/2)*(a^2 + 12*a*b + 16*b^2) 
*Cosh[c + d*x])/(a + 2*b + a*Cosh[2*(c + d*x)])^2 + (2*Sqrt[a]*Sqrt[b]*(3* 
a^2 - 12*a*b - 80*b^2)*Cosh[c + d*x])/(a + 2*b + a*Cosh[2*(c + d*x)]))*(a 
+ 2*b + a*Cosh[2*c + 2*d*x])^3*Sech[c + d*x]^6)/(4096*a^(5/2)*b^(5/2)*d*(a 
 + b*Sech[c + d*x]^2)^3) + (5*((3*(ArcTan[(Sqrt[a] - I*Sqrt[a + b]*Tanh[(c 
 + d*x)/2])/Sqrt[b]] + ArcTan[(Sqrt[a] + I*Sqrt[a + b]*Tanh[(c + d*x)/2])/ 
Sqrt[b]]))/Sqrt[a] + (2*Sqrt[b]*Cosh[c + d*x]*(3*a + 10*b + 3*a*Cosh[2*(c 
+ d*x)]))/(a + 2*b + a*Cosh[2*(c + d*x)])^2)*(a + 2*b + a*Cosh[2*c + 2*d*x 
])^3*Sech[c + d*x]^6)/(4096*b^(5/2)*d*(a + b*Sech[c + d*x]^2)^3) + (9*(-(( 
3*a - 4*b)*(ArcTan[((Sqrt[a] - I*Sqrt[a + b]*Sqrt[(Cosh[c] - Sinh[c])^2])* 
Sinh[c]*Tanh[(d*x)/2] + Cosh[c]*(Sqrt[a] - I*Sqrt[a + b]*Sqrt[(Cosh[c] - S 
inh[c])^2]*Tanh[(d*x)/2]))/Sqrt[b]] + ArcTan[((Sqrt[a] + I*Sqrt[a + b]*Sqr 
t[(Cosh[c] - Sinh[c])^2])*Sinh[c]*Tanh[(d*x)/2] + Cosh[c]*(Sqrt[a] + I*Sqr 
t[a + b]*Sqrt[(Cosh[c] - Sinh[c])^2]*Tanh[(d*x)/2]))/Sqrt[b]])) - (2*Sqrt[ 
a]*Sqrt[b]*Cosh[c + d*x]*(3*a^2 + 6*a*b + 8*b^2 + a*(3*a - 4*b)*Cosh[2*...
 
3.1.44.3 Rubi [A] (verified)

Time = 0.27 (sec) , antiderivative size = 119, normalized size of antiderivative = 1.03, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {3042, 26, 4621, 252, 252, 262, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sinh (c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^3} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int -\frac {i \sin (i c+i d x)}{\left (a+b \sec (i c+i d x)^2\right )^3}dx\)

\(\Big \downarrow \) 26

\(\displaystyle -i \int \frac {\sin (i c+i d x)}{\left (b \sec (i c+i d x)^2+a\right )^3}dx\)

\(\Big \downarrow \) 4621

\(\displaystyle \frac {\int \frac {\cosh ^6(c+d x)}{\left (a \cosh ^2(c+d x)+b\right )^3}d\cosh (c+d x)}{d}\)

\(\Big \downarrow \) 252

\(\displaystyle \frac {\frac {5 \int \frac {\cosh ^4(c+d x)}{\left (a \cosh ^2(c+d x)+b\right )^2}d\cosh (c+d x)}{4 a}-\frac {\cosh ^5(c+d x)}{4 a \left (a \cosh ^2(c+d x)+b\right )^2}}{d}\)

\(\Big \downarrow \) 252

\(\displaystyle \frac {\frac {5 \left (\frac {3 \int \frac {\cosh ^2(c+d x)}{a \cosh ^2(c+d x)+b}d\cosh (c+d x)}{2 a}-\frac {\cosh ^3(c+d x)}{2 a \left (a \cosh ^2(c+d x)+b\right )}\right )}{4 a}-\frac {\cosh ^5(c+d x)}{4 a \left (a \cosh ^2(c+d x)+b\right )^2}}{d}\)

\(\Big \downarrow \) 262

\(\displaystyle \frac {\frac {5 \left (\frac {3 \left (\frac {\cosh (c+d x)}{a}-\frac {b \int \frac {1}{a \cosh ^2(c+d x)+b}d\cosh (c+d x)}{a}\right )}{2 a}-\frac {\cosh ^3(c+d x)}{2 a \left (a \cosh ^2(c+d x)+b\right )}\right )}{4 a}-\frac {\cosh ^5(c+d x)}{4 a \left (a \cosh ^2(c+d x)+b\right )^2}}{d}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {\frac {5 \left (\frac {3 \left (\frac {\cosh (c+d x)}{a}-\frac {\sqrt {b} \arctan \left (\frac {\sqrt {a} \cosh (c+d x)}{\sqrt {b}}\right )}{a^{3/2}}\right )}{2 a}-\frac {\cosh ^3(c+d x)}{2 a \left (a \cosh ^2(c+d x)+b\right )}\right )}{4 a}-\frac {\cosh ^5(c+d x)}{4 a \left (a \cosh ^2(c+d x)+b\right )^2}}{d}\)

input
Int[Sinh[c + d*x]/(a + b*Sech[c + d*x]^2)^3,x]
 
output
(-1/4*Cosh[c + d*x]^5/(a*(b + a*Cosh[c + d*x]^2)^2) + (5*((3*(-((Sqrt[b]*A 
rcTan[(Sqrt[a]*Cosh[c + d*x])/Sqrt[b]])/a^(3/2)) + Cosh[c + d*x]/a))/(2*a) 
 - Cosh[c + d*x]^3/(2*a*(b + a*Cosh[c + d*x]^2))))/(4*a))/d
 

3.1.44.3.1 Defintions of rubi rules used

rule 26
Int[(Complex[0, a_])*(Fx_), x_Symbol] :> Simp[(Complex[Identity[0], a])   I 
nt[Fx, x], x] /; FreeQ[a, x] && EqQ[a^2, 1]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 252
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[c*(c*x 
)^(m - 1)*((a + b*x^2)^(p + 1)/(2*b*(p + 1))), x] - Simp[c^2*((m - 1)/(2*b* 
(p + 1)))   Int[(c*x)^(m - 2)*(a + b*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c 
}, x] && LtQ[p, -1] && GtQ[m, 1] &&  !ILtQ[(m + 2*p + 3)/2, 0] && IntBinomi 
alQ[a, b, c, 2, m, p, x]
 

rule 262
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[c*(c*x) 
^(m - 1)*((a + b*x^2)^(p + 1)/(b*(m + 2*p + 1))), x] - Simp[a*c^2*((m - 1)/ 
(b*(m + 2*p + 1)))   Int[(c*x)^(m - 2)*(a + b*x^2)^p, x], x] /; FreeQ[{a, b 
, c, p}, x] && GtQ[m, 2 - 1] && NeQ[m + 2*p + 1, 0] && IntBinomialQ[a, b, c 
, 2, m, p, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4621
Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*sin[(e_.) + (f_.)*(x_ 
)]^(m_.), x_Symbol] :> With[{ff = FreeFactors[Cos[e + f*x], x]}, Simp[-ff/f 
   Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*((b + a*(ff*x)^n)^p/(ff*x)^(n*p)), 
x], x, Cos[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f}, x] && IntegerQ[(m - 1)/ 
2] && IntegerQ[n] && IntegerQ[p]
 
3.1.44.4 Maple [A] (verified)

Time = 164.16 (sec) , antiderivative size = 84, normalized size of antiderivative = 0.72

method result size
derivativedivides \(-\frac {-\frac {1}{a^{3} \operatorname {sech}\left (d x +c \right )}-\frac {b \left (\frac {\frac {7 \operatorname {sech}\left (d x +c \right )^{3} b}{8}+\frac {9 \,\operatorname {sech}\left (d x +c \right ) a}{8}}{\left (a +b \operatorname {sech}\left (d x +c \right )^{2}\right )^{2}}+\frac {15 \arctan \left (\frac {b \,\operatorname {sech}\left (d x +c \right )}{\sqrt {a b}}\right )}{8 \sqrt {a b}}\right )}{a^{3}}}{d}\) \(84\)
default \(-\frac {-\frac {1}{a^{3} \operatorname {sech}\left (d x +c \right )}-\frac {b \left (\frac {\frac {7 \operatorname {sech}\left (d x +c \right )^{3} b}{8}+\frac {9 \,\operatorname {sech}\left (d x +c \right ) a}{8}}{\left (a +b \operatorname {sech}\left (d x +c \right )^{2}\right )^{2}}+\frac {15 \arctan \left (\frac {b \,\operatorname {sech}\left (d x +c \right )}{\sqrt {a b}}\right )}{8 \sqrt {a b}}\right )}{a^{3}}}{d}\) \(84\)
risch \(\frac {{\mathrm e}^{d x +c}}{2 a^{3} d}+\frac {{\mathrm e}^{-d x -c}}{2 a^{3} d}+\frac {\left (9 a \,{\mathrm e}^{6 d x +6 c}+27 a \,{\mathrm e}^{4 d x +4 c}+28 b \,{\mathrm e}^{4 d x +4 c}+27 \,{\mathrm e}^{2 d x +2 c} a +28 b \,{\mathrm e}^{2 d x +2 c}+9 a \right ) {\mathrm e}^{d x +c} b}{4 a^{3} \left (a \,{\mathrm e}^{4 d x +4 c}+2 \,{\mathrm e}^{2 d x +2 c} a +4 b \,{\mathrm e}^{2 d x +2 c}+a \right )^{2} d}+\frac {15 \sqrt {-a b}\, \ln \left ({\mathrm e}^{2 d x +2 c}-\frac {2 \sqrt {-a b}\, {\mathrm e}^{d x +c}}{a}+1\right )}{16 a^{4} d}-\frac {15 \sqrt {-a b}\, \ln \left ({\mathrm e}^{2 d x +2 c}+\frac {2 \sqrt {-a b}\, {\mathrm e}^{d x +c}}{a}+1\right )}{16 a^{4} d}\) \(237\)

input
int(sinh(d*x+c)/(a+b*sech(d*x+c)^2)^3,x,method=_RETURNVERBOSE)
 
output
-1/d*(-1/a^3/sech(d*x+c)-1/a^3*b*((7/8*sech(d*x+c)^3*b+9/8*sech(d*x+c)*a)/ 
(a+b*sech(d*x+c)^2)^2+15/8/(a*b)^(1/2)*arctan(b*sech(d*x+c)/(a*b)^(1/2))))
 
3.1.44.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2599 vs. \(2 (100) = 200\).

Time = 0.32 (sec) , antiderivative size = 4829, normalized size of antiderivative = 41.63 \[ \int \frac {\sinh (c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^3} \, dx=\text {Too large to display} \]

input
integrate(sinh(d*x+c)/(a+b*sech(d*x+c)^2)^3,x, algorithm="fricas")
 
output
[1/16*(8*a^2*cosh(d*x + c)^10 + 80*a^2*cosh(d*x + c)*sinh(d*x + c)^9 + 8*a 
^2*sinh(d*x + c)^10 + 20*(2*a^2 + 5*a*b)*cosh(d*x + c)^8 + 20*(18*a^2*cosh 
(d*x + c)^2 + 2*a^2 + 5*a*b)*sinh(d*x + c)^8 + 160*(6*a^2*cosh(d*x + c)^3 
+ (2*a^2 + 5*a*b)*cosh(d*x + c))*sinh(d*x + c)^7 + 20*(4*a^2 + 15*a*b + 12 
*b^2)*cosh(d*x + c)^6 + 20*(84*a^2*cosh(d*x + c)^4 + 28*(2*a^2 + 5*a*b)*co 
sh(d*x + c)^2 + 4*a^2 + 15*a*b + 12*b^2)*sinh(d*x + c)^6 + 8*(252*a^2*cosh 
(d*x + c)^5 + 140*(2*a^2 + 5*a*b)*cosh(d*x + c)^3 + 15*(4*a^2 + 15*a*b + 1 
2*b^2)*cosh(d*x + c))*sinh(d*x + c)^5 + 20*(4*a^2 + 15*a*b + 12*b^2)*cosh( 
d*x + c)^4 + 20*(84*a^2*cosh(d*x + c)^6 + 70*(2*a^2 + 5*a*b)*cosh(d*x + c) 
^4 + 15*(4*a^2 + 15*a*b + 12*b^2)*cosh(d*x + c)^2 + 4*a^2 + 15*a*b + 12*b^ 
2)*sinh(d*x + c)^4 + 80*(12*a^2*cosh(d*x + c)^7 + 14*(2*a^2 + 5*a*b)*cosh( 
d*x + c)^5 + 5*(4*a^2 + 15*a*b + 12*b^2)*cosh(d*x + c)^3 + (4*a^2 + 15*a*b 
 + 12*b^2)*cosh(d*x + c))*sinh(d*x + c)^3 + 20*(2*a^2 + 5*a*b)*cosh(d*x + 
c)^2 + 20*(18*a^2*cosh(d*x + c)^8 + 28*(2*a^2 + 5*a*b)*cosh(d*x + c)^6 + 1 
5*(4*a^2 + 15*a*b + 12*b^2)*cosh(d*x + c)^4 + 6*(4*a^2 + 15*a*b + 12*b^2)* 
cosh(d*x + c)^2 + 2*a^2 + 5*a*b)*sinh(d*x + c)^2 + 15*(a^2*cosh(d*x + c)^9 
 + 9*a^2*cosh(d*x + c)*sinh(d*x + c)^8 + a^2*sinh(d*x + c)^9 + 4*(a^2 + 2* 
a*b)*cosh(d*x + c)^7 + 4*(9*a^2*cosh(d*x + c)^2 + a^2 + 2*a*b)*sinh(d*x + 
c)^7 + 28*(3*a^2*cosh(d*x + c)^3 + (a^2 + 2*a*b)*cosh(d*x + c))*sinh(d*x + 
 c)^6 + 2*(3*a^2 + 8*a*b + 8*b^2)*cosh(d*x + c)^5 + 2*(63*a^2*cosh(d*x ...
 
3.1.44.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\sinh (c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^3} \, dx=\text {Timed out} \]

input
integrate(sinh(d*x+c)/(a+b*sech(d*x+c)**2)**3,x)
 
output
Timed out
 
3.1.44.7 Maxima [F]

\[ \int \frac {\sinh (c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^3} \, dx=\int { \frac {\sinh \left (d x + c\right )}{{\left (b \operatorname {sech}\left (d x + c\right )^{2} + a\right )}^{3}} \,d x } \]

input
integrate(sinh(d*x+c)/(a+b*sech(d*x+c)^2)^3,x, algorithm="maxima")
 
output
1/4*(2*a^2*e^(10*d*x + 10*c) + 2*a^2 + 5*(2*a^2*e^(8*c) + 5*a*b*e^(8*c))*e 
^(8*d*x) + 5*(4*a^2*e^(6*c) + 15*a*b*e^(6*c) + 12*b^2*e^(6*c))*e^(6*d*x) + 
 5*(4*a^2*e^(4*c) + 15*a*b*e^(4*c) + 12*b^2*e^(4*c))*e^(4*d*x) + 5*(2*a^2* 
e^(2*c) + 5*a*b*e^(2*c))*e^(2*d*x))/(a^5*d*e^(9*d*x + 9*c) + a^5*d*e^(d*x 
+ c) + 4*(a^5*d*e^(7*c) + 2*a^4*b*d*e^(7*c))*e^(7*d*x) + 2*(3*a^5*d*e^(5*c 
) + 8*a^4*b*d*e^(5*c) + 8*a^3*b^2*d*e^(5*c))*e^(5*d*x) + 4*(a^5*d*e^(3*c) 
+ 2*a^4*b*d*e^(3*c))*e^(3*d*x)) - 1/2*integrate(15/2*(b*e^(3*d*x + 3*c) - 
b*e^(d*x + c))/(a^4*e^(4*d*x + 4*c) + a^4 + 2*(a^4*e^(2*c) + 2*a^3*b*e^(2* 
c))*e^(2*d*x)), x)
 
3.1.44.8 Giac [F]

\[ \int \frac {\sinh (c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^3} \, dx=\int { \frac {\sinh \left (d x + c\right )}{{\left (b \operatorname {sech}\left (d x + c\right )^{2} + a\right )}^{3}} \,d x } \]

input
integrate(sinh(d*x+c)/(a+b*sech(d*x+c)^2)^3,x, algorithm="giac")
 
output
sage0*x
 
3.1.44.9 Mupad [B] (verification not implemented)

Time = 2.22 (sec) , antiderivative size = 103, normalized size of antiderivative = 0.89 \[ \int \frac {\sinh (c+d x)}{\left (a+b \text {sech}^2(c+d x)\right )^3} \, dx=\frac {\frac {7\,b^2\,\mathrm {cosh}\left (c+d\,x\right )}{8}+\frac {9\,a\,b\,{\mathrm {cosh}\left (c+d\,x\right )}^3}{8}}{d\,a^5\,{\mathrm {cosh}\left (c+d\,x\right )}^4+2\,d\,a^4\,b\,{\mathrm {cosh}\left (c+d\,x\right )}^2+d\,a^3\,b^2}+\frac {\mathrm {cosh}\left (c+d\,x\right )}{a^3\,d}-\frac {15\,\sqrt {b}\,\mathrm {atan}\left (\frac {\sqrt {a}\,\mathrm {cosh}\left (c+d\,x\right )}{\sqrt {b}}\right )}{8\,a^{7/2}\,d} \]

input
int(sinh(c + d*x)/(a + b/cosh(c + d*x)^2)^3,x)
 
output
((7*b^2*cosh(c + d*x))/8 + (9*a*b*cosh(c + d*x)^3)/8)/(a^5*d*cosh(c + d*x) 
^4 + a^3*b^2*d + 2*a^4*b*d*cosh(c + d*x)^2) + cosh(c + d*x)/(a^3*d) - (15* 
b^(1/2)*atan((a^(1/2)*cosh(c + d*x))/b^(1/2)))/(8*a^(7/2)*d)